-
tensorflow for deep learning.pdf下载
资源介绍
1. Introduction to Deep Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Machine Learning eats Computer Science 10
Deep Learning Primitives 11
Fully Connected Layer 11
Convolutional Layer 12
Recurrent Neural Network (RNN) Layers 13
Long Short-Term Memory (LSTM) Cells 14
Deep Learning Zoo 14
LeNet 14
AlexNet 15
ResNet 16
Neural Captioning Model 16
Google Neural Machine Translation 17
One shot models 18
AlphaGo 19
Generative Adversarial Networks 20
Neural Turing Machines 21
Deep Learning Frameworks 22
Empirical Learning 25
2. Introduction toTensorfow Primitives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Introducing Tensors 27
Scalars, Vectors, and Matrices 28
Matrix Mathematics 31
Tensors 33
Tensors in physics. 35
Mathematical Asides 37
Basic Computations in Tensorflow 38
Initializing Constant Tensors. 38
Sampling Random Tensors 40
Tensor Addition and Scaling 40
Matrix Operations 41
Tensor types 42
Tensor Shape Manipulations 43
Introduction to Broadcasting 44
Imperative and Declarative Programming 45
Tensorflow Graphs 46
Tensorflow Sessions 46
Tensorflow Variables 47
Review 4