登录 注册
当前位置:主页 > 资源下载 > 50 > 利用BERT进行多语言文本情感分析

利用BERT进行多语言文本情感分析

  • 更新:2024-07-27 20:15:44
  • 大小:9.26MB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:其它 - 开发技术
  • 格式:ZIP

资源介绍

基于BERT的多语言文本情感分析 介绍 社交媒体广泛用于现代人的交流中,推特在英语国家中广泛用于表达情感。 微博在中国被广泛用作同一工具。 他们两个都通过几段文字表达了情感。 有必要设计一种可以对多种语言进行情感分类的系统。 对文本进行情感分类的困难如下。 首先,具有讽刺意味的是,例如交通警察因未付停车费而将他的驾照吊销了。 其次,在与域相关的问题中,例如,我的计算机的冷却系统声音非常大,这是负面的。 可以肯定地说我家的声音很大。 第三,网络流行词也将影响情绪分析,意义在标记化后将完全改变。 为了避免副作用,必须添加人工干预。 第四,文本相对简短,有时会有所遗漏,所有这些都会导致歧义或参考错误。 传统的将统计和规则结合起来的方法不能很好地解决这些难题。 深度学习强大的特征提取能力可以很好地解决这些问题。 Google在2018年10月提出了Bert模型[1]。 该模型不仅集成了LSTM