登录 注册
当前位置:主页 > 资源下载 > 论文研究-基于Hadoop的多特征协同过滤算法研究.pdf下载

论文研究-基于Hadoop的多特征协同过滤算法研究.pdf下载

  • 更新:2024-07-30 16:08:20
  • 大小:617KB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:数据集 - 行业研究
  • 格式:PDF

资源介绍

协同过滤是互联网推荐系统的核心技术,针对协同过滤推荐算法中推荐精度和推荐效率以及数据可扩展性问题,采用灰色关联相似度,设计和实现了一种基于Hadoop的多特征协同过滤推荐算法,使用贝叶斯概率对用户特征属性进行分析,根据分析结果形成用户最近邻居集合,通过Hadoop中的MapReduce模型构建预测评分矩阵,最后基于邻居集和用户灰色关联度形成推荐列表。实验结果表明,该算法提高了推荐的有效性和准确度,且能有效支持较大数据集。