登录 注册
当前位置:主页 > 资源下载 > 32 > 贝叶斯线性模型

贝叶斯线性模型

  • 更新:2024-07-30 16:42:50
  • 大小:162KB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:其它 - 开发技术
  • 格式:ZIP

资源介绍

贝叶斯线性模型 作者:Asher Bender 日期:2015年6月 许可证: 概述 该代码实现了 。 在贝叶斯框架下处理线性模型可以: 参数估计(线性模型的学习系数) 执行预测 选型 下图演示了这些功能,其中的任务是学习噪声函数的多项式逼近: 顶部子图显示了对数据增加复杂度(度)的多项式拟合后的对数边际似然。 对数边际可能性最高的模型由垂直红线标记。 与最大似然方法相比,贝叶斯模型选择的好处是最大化对数边际似然(模型证据)倾向于避免模型选择期间的过度拟合。 这是由于边际似然方程中的模型复杂性损失导致了模型更简单。 最佳模型将在数据拟合和模型复杂性之间取得平衡,从而实现更好的概括性。 底部子图显示了嘈杂的正弦数据(黑点)和来自模型的预测(红色实线),包括95%置信区间(红色虚线)。 背景强度图说明了模型中数据的后验可能性。 底部绘图中使用的模型是顶部绘图中建议的模型。 部分中