资源介绍
moead优化算法摘要:在传统的多目标优化问题上常常使用分解策略。但是,这项策略还没有被广泛的应用到多目标进化优化中。本文提出了一种基于分解的多目标进化算法。该算法将一个多目标优化问题分解为一组???单目标优化问题并对它们同时优化。通过利用与每一个子问题相邻的子问题的优化信息来优化它本身,这是的该算法比MOGLS和非支配排序遗传算法NSGA-Ⅱ相比有更低的计算复杂度。实验结果证明:在0-1背包问题和连续的多目标优化问题上,利用一些简单的分解方法本算法就可以比MOGLS和NSGA-Ⅱ表现的更加出色或者表现相近。实验也表明目标正态化的MOEA/D算法可以解决规模范围相异的多目标问题,同时使用一个先进分解方法的MOEA/D可以产生一组分别非常均匀的解对于有3个目标问题的测试样例。最后,MOEA/D在较小种群数量是的性能,还有可扩展性和敏感性都在本篇论文中通过实验经行了相应的研究。
- 上一篇: 群智能优化算法及其应用
- 下一篇: 多目标优化算法(二)MOEAD(python版)