-
卷积神经网络在深度学习中的模式识别能力与代码实现的比较
资源介绍
深度学习之卷积神经网络CNN做手写体识别的VS代码。支持linux版本和VS2012版本。
tiny-cnn: A C++11 implementation of convolutional neural networks
========
tiny-cnn is a C++11 implementation of convolutional neural networks.
design principle
-----
* fast, without GPU
98.8% accuracy on MNIST in 13 minutes training (@Core i7-3520M)
* header only, policy-based design
supported networks
-----
### layer-types
* fully-connected layer
* convolutional layer
* average pooling layer
### activation functions
* tanh
* sigmoid
* rectified linear
* identity
### loss functions
* cross-entropy
* mean-squared-error
### optimization algorithm
* stochastic gradient descent (with/without L2 normalization)
* stochastic gradient levenberg marquardt
dependencies
-----
* boost C++ library
* Intel TBB
sample code
------
```cpp
#include "tiny_cnn.h"
using namespace tiny_cnn;
// specify loss-function and optimization-algorithm
typedef network CNN;
// tanh, 32x32 input, 5x5 window, 1-6 feature-maps convolution
convolutional_layer C1(32, 32, 5, 1, 6);
// tanh, 28x28 input, 6 feature-maps, 2x2 subsampling
average_pooling_layer S2(28, 28, 6, 2);
// fully-connected layers
fully_connected_layer F3(14*14*6, 120);
fully_connected_layer F4(120, 10);
// connect all
CNN mynet;
mynet.add(&C1); mynet.add(&S2); mynet.add(&F3); mynet.add(&F4);
assert(mynet.in_dim() == 32*32);
assert(mynet.out_dim() == 10);
```
more sample, read main.cpp
build sample program
------
### gcc(4.6~)
without tbb
./waf configure --BOOST_ROOT=your-boost-root
./waf build
with tbb
./waf configure --TBB --TBB_ROOT=your-tbb-root --BOOST_ROOT=your-boost-root
./waf build
with tbb and SSE/AVX
./waf configure --AVX --TBB --TBB_ROOT=your-tbb-root --BOOST_ROOT=your-boost-root
./waf build
./waf configure --SSE --TBB --TBB_ROOT=your-tbb-root --BOOST_ROOT=your-boost-root
./waf build
or edit inlude/config.h to customize default behavior.
### vc(2012~)
open vc/tiny_cnn.sln and build in release mode.
- 上一篇: c-c++写的卷积神经网络
- 下一篇: 卷积神经网络-C/C++开发