-
论文研究-基于改进Chan-Vese模型的电力设备红外图像分割.pdf下载
资源介绍
电力设备红外图像分割是电力设备模式识别和红外故障诊断的基础。Chan-Vese模型能够有效分割含强噪声和边缘模糊的图像,但其分割速度缓慢,并且在分割电力设备红外图像时不能有效消除无关背景。提出一种改进的Chan-Vese模型,采用多个初始轮廓,并采用二值函数代替距离函数初始化水平集函数;同时对Chan-Vese模型的梯度下降流提出改进,简化其图像数据项,并用一个高斯核函数取代长度正则项。改进的模型不仅方便计算,而且可以在迭代过程中采用更大时间步长,加快曲线演化速度。在对电力设备红外图像的分割实验中,证明了相比Chan-Vese模型,新模型分割速度明显提高,并且具备较好的消除无关背景的性能。