登录 注册
当前位置:主页 > 资源下载 > 11 > C++中的消费者生产者模型

C++中的消费者生产者模型

  • 更新:2024-06-10 20:05:02
  • 大小:9KB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:C - 后端
  • 格式:TXT

资源介绍

#include #include #include #include #include //定义一些常量; //本程序允许的最大临界区数; #define MAX_BUFFER_NUM 10 //秒到微秒的乘法因子; #define INTE_PER_SEC 1000 //本程序允许的生产和消费线程的总数; #define MAX_THREAD_NUM 64 //定义一个结构,记录在测试文件中指定的每一个线程的参数 struct ThreadInfo { int serial; //线程序列号 char entity; //是P还是C double delay; //线程延迟 int thread_request[MAX_THREAD_NUM]; //线程请求队列 int n_request; //请求个数 }; //全局变量的定义 //临界区对象的声明,用于管理缓冲区的互斥访问; int Buffer_Critical[MAX_BUFFER_NUM]; //缓冲区声明,用于存放产品; ThreadInfo Thread_Info[MAX_THREAD_NUM]; //线程信息数组; HANDLE h_Thread[MAX_THREAD_NUM]; //用于存储每个线程句柄的数组; HANDLE empty_semaphore; //一个信号量; HANDLE h_mutex; //一个互斥量; HANDLE h_Semaphore[MAX_THREAD_NUM]; //生产者允许消费者开始消费的信号量; CRITICAL_SECTION PC_Critical[MAX_BUFFER_NUM]; DWORD n_Thread = 0; //实际的线程的数目; DWORD n_Buffer_or_Critical; //实际的缓冲区或者临界区的数目; //生产消费及辅助函数的声明 void Produce(void *p); void Consume(void *p); bool IfInOtherRequest(int); int FindProducePositon(); int FindBufferPosition(int); int main(int argc, char **argv) { //声明所需变量; DWORD wait_for_all; ifstream inFile; if (argc!=2) { printf("Usage:%s \n",argv[0]); return 1; } //初始化缓冲区; for(int i=0;i< MAX_BUFFER_NUM;i++) Buffer_Critical[i] = -1; //初始化每个线程的请求队列; for(int j=0;j> n_Buffer_or_Critical; inFile.get(); // 读取测试文件中的空格,将文件指针指向下一行; printf("输入文件是:\n"); //回显获得的缓冲区的数目信息; printf("%d \n",(int) n_Buffer_or_Critical); //提取每个线程的信息到相应数据结构中; while(inFile){ inFile >> Thread_Info[n_Thread].serial; inFile >> Thread_Info[n_Thread].entity; inFile >> Thread_Info[n_Thread].delay; char c; inFile.get(c); while(c!='\n'&& !inFile.eof()) { inFile>> Thread_Info[n_Thread].thread_request[Thread_Info[n_Thread].n_request++]; inFile.get(c); } n_Thread++; } //回显获得的线程信息,便于确认正确性; for(j=0;j<(int) n_Thread;j++) { int Temp_serial = Thread_Info[j].serial; char Temp_entity = Thread_Info[j].entity; double Temp_delay = Thread_Info[j].delay; printf(" \nthread%2d %c %f ",Temp_serial,Temp_entity,Temp_delay); int Temp_request = Thread_Info[j].n_request; for(int k=0;kserial; m_delay = (DWORD)(((ThreadInfo*)(p))->delay *INTE_PER_SEC); Sleep(m_delay); //开始请求生产 printf("Producer %2d sends the produce require.\n",m_serial); //互斥访问下一个可用于生产的空临界区,实现写写互斥; wait_for_mutex = WaitForSingleObject(h_mutex,-1); //确认有空缓冲区可供生产,同时将空位置数empty减1;用于生产者和消费者的同步; //若没有则一直等待,直到消费者进程释放资源为止; wait_for_semaphore = WaitForSingleObject(empty_semaphore,-1); int ProducePos = FindProducePosition(); ReleaseMutex(h_mutex); //生产者在获得自己的空位置并做上标记后,以下的写操作在生产者之间可以并发; //核心生产步骤中,程序将生产者的ID作为产品编号放入,方便消费者识别; printf("Producer %2d begin to produce at position %2d.\n",m_serial,ProducePos); Buffer_Critical[ProducePos] = m_serial; printf("Producer %2d finish producing :\n ",m_serial); printf(" position[ %2d ]:%3d \n\n" ,ProducePos,Buffer_Critical[ProducePos]); //使生产者写的缓冲区可以被多个消费者使用,实现读写同步; ReleaseSemaphore(h_Semaphore[m_serial],n_Thread,NULL); } //消费者进程 void Consume(void * p) { //局部变量声明; DWORD wait_for_semaphore,m_delay; int m_serial,m_requestNum; //消费者的序列号和请求的数目; int m_thread_request[MAX_THREAD_NUM]; //本消费线程的请求队列; //提取本线程的信息到本地; m_serial = ((ThreadInfo*)(p))->serial; m_delay = (DWORD)(((ThreadInfo*)(p))->delay *INTE_PER_SEC); m_requestNum = ((ThreadInfo *)(p))->n_request; for (int i = 0;ithread_request[i]; Sleep(m_delay); //循环进行所需产品的消费 for(i =0;ithread_request[i] =-1; if(!IfInOtherRequest(m_thread_request[i])) { Buffer_Critical[BufferPos] = -1; //-1标记缓冲区为空; printf("Consumer %2d finish consuming %2d:\n ",m_serial,m_thread_request[i]); printf(" position[ %2d ]:%3d \n\n" ,BufferPos,Buffer_Critical[BufferPos]); ReleaseSemaphore(empty_semaphore,1,NULL); } else { printf("Consumer %2d finish consuming product %2d\n\n ",m_serial,m_thread_request[i]); } //离开临界区 LeaveCriticalSection(&PC_Critical[BufferPos]); } }