资源介绍
#include
#include
#include
#include
#include
//定义一些常量;
//本程序允许的最大临界区数;
#define MAX_BUFFER_NUM 10
//秒到微秒的乘法因子;
#define INTE_PER_SEC 1000
//本程序允许的生产和消费线程的总数;
#define MAX_THREAD_NUM 64
//定义一个结构,记录在测试文件中指定的每一个线程的参数
struct ThreadInfo
{
int serial; //线程序列号
char entity; //是P还是C
double delay; //线程延迟
int thread_request[MAX_THREAD_NUM]; //线程请求队列
int n_request; //请求个数
};
//全局变量的定义
//临界区对象的声明,用于管理缓冲区的互斥访问;
int Buffer_Critical[MAX_BUFFER_NUM]; //缓冲区声明,用于存放产品;
ThreadInfo Thread_Info[MAX_THREAD_NUM]; //线程信息数组;
HANDLE h_Thread[MAX_THREAD_NUM]; //用于存储每个线程句柄的数组;
HANDLE empty_semaphore; //一个信号量;
HANDLE h_mutex; //一个互斥量;
HANDLE h_Semaphore[MAX_THREAD_NUM]; //生产者允许消费者开始消费的信号量;
CRITICAL_SECTION PC_Critical[MAX_BUFFER_NUM];
DWORD n_Thread = 0; //实际的线程的数目;
DWORD n_Buffer_or_Critical; //实际的缓冲区或者临界区的数目;
//生产消费及辅助函数的声明
void Produce(void *p);
void Consume(void *p);
bool IfInOtherRequest(int);
int FindProducePositon();
int FindBufferPosition(int);
int main(int argc, char **argv)
{
//声明所需变量;
DWORD wait_for_all;
ifstream inFile;
if (argc!=2) {
printf("Usage:%s \n",argv[0]);
return 1;
}
//初始化缓冲区;
for(int i=0;i< MAX_BUFFER_NUM;i++)
Buffer_Critical[i] = -1;
//初始化每个线程的请求队列;
for(int j=0;j> n_Buffer_or_Critical;
inFile.get(); // 读取测试文件中的空格,将文件指针指向下一行;
printf("输入文件是:\n");
//回显获得的缓冲区的数目信息;
printf("%d \n",(int) n_Buffer_or_Critical);
//提取每个线程的信息到相应数据结构中;
while(inFile){
inFile >> Thread_Info[n_Thread].serial;
inFile >> Thread_Info[n_Thread].entity;
inFile >> Thread_Info[n_Thread].delay;
char c;
inFile.get(c);
while(c!='\n'&& !inFile.eof()) {
inFile>> Thread_Info[n_Thread].thread_request[Thread_Info[n_Thread].n_request++];
inFile.get(c);
}
n_Thread++;
}
//回显获得的线程信息,便于确认正确性;
for(j=0;j<(int) n_Thread;j++) {
int Temp_serial = Thread_Info[j].serial;
char Temp_entity = Thread_Info[j].entity;
double Temp_delay = Thread_Info[j].delay;
printf(" \nthread%2d %c %f ",Temp_serial,Temp_entity,Temp_delay);
int Temp_request = Thread_Info[j].n_request;
for(int k=0;kserial;
m_delay = (DWORD)(((ThreadInfo*)(p))->delay *INTE_PER_SEC);
Sleep(m_delay);
//开始请求生产
printf("Producer %2d sends the produce require.\n",m_serial);
//互斥访问下一个可用于生产的空临界区,实现写写互斥;
wait_for_mutex = WaitForSingleObject(h_mutex,-1);
//确认有空缓冲区可供生产,同时将空位置数empty减1;用于生产者和消费者的同步;
//若没有则一直等待,直到消费者进程释放资源为止;
wait_for_semaphore = WaitForSingleObject(empty_semaphore,-1);
int ProducePos = FindProducePosition();
ReleaseMutex(h_mutex);
//生产者在获得自己的空位置并做上标记后,以下的写操作在生产者之间可以并发;
//核心生产步骤中,程序将生产者的ID作为产品编号放入,方便消费者识别;
printf("Producer %2d begin to produce at position %2d.\n",m_serial,ProducePos);
Buffer_Critical[ProducePos] = m_serial;
printf("Producer %2d finish producing :\n ",m_serial);
printf(" position[ %2d ]:%3d \n\n" ,ProducePos,Buffer_Critical[ProducePos]);
//使生产者写的缓冲区可以被多个消费者使用,实现读写同步;
ReleaseSemaphore(h_Semaphore[m_serial],n_Thread,NULL);
}
//消费者进程
void Consume(void * p)
{
//局部变量声明;
DWORD wait_for_semaphore,m_delay;
int m_serial,m_requestNum; //消费者的序列号和请求的数目;
int m_thread_request[MAX_THREAD_NUM]; //本消费线程的请求队列;
//提取本线程的信息到本地;
m_serial = ((ThreadInfo*)(p))->serial;
m_delay = (DWORD)(((ThreadInfo*)(p))->delay *INTE_PER_SEC);
m_requestNum = ((ThreadInfo *)(p))->n_request;
for (int i = 0;ithread_request[i];
Sleep(m_delay);
//循环进行所需产品的消费
for(i =0;ithread_request[i] =-1;
if(!IfInOtherRequest(m_thread_request[i])) {
Buffer_Critical[BufferPos] = -1; //-1标记缓冲区为空;
printf("Consumer %2d finish consuming %2d:\n ",m_serial,m_thread_request[i]);
printf(" position[ %2d ]:%3d \n\n" ,BufferPos,Buffer_Critical[BufferPos]);
ReleaseSemaphore(empty_semaphore,1,NULL);
}
else {
printf("Consumer %2d finish consuming product %2d\n\n ",m_serial,m_thread_request[i]);
}
//离开临界区
LeaveCriticalSection(&PC_Critical[BufferPos]);
}
}
- 上一篇: 操作系统课程设计读者-写者问题的实现
- 下一篇: VTK三维可视化--显示点云.py