登录 注册
当前位置:主页 > 资源下载 > 50 > Jointly Learning Explainable Rules for Recommendation with Knowledge Graph.pdf下载

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph.pdf下载

  • 更新:2024-05-18 11:33:56
  • 大小:1.34MB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:深度学习 - 人工智能
  • 格式:PDF

资源介绍

Explainabilityandeffectivenessaretwokeyaspectsforbuildingrecommendersystems.Prioreffortsmostlyfocusonincorporatingside informationtoachievebetterrecommendationperformance.However,thesemethodshavesomeweaknesses:(1)predictionofneural network-basedembeddingmethodsarehardtoexplainanddebug; (2)symbolic,graph-basedapproaches(e.g.,metapath-basedmodels) requiremanualeffortsanddomainknowledgetodefinepatterns andrules,andignoretheitemassociationtypes(e.g.substitutable andcomplementary).Inthispaper,weproposeanoveljointlearningframeworktointegrateinductionofexplainablerulesfromknowledgegraphwithconstructionofarule-guidedneuralrecommendation model. The framework encourages two modules to complement each other in generating effective and explainable recommendation:1)inductiverules,minedfromitem-centricknowledgegraphs, summarizecommonmulti-hoprelationalpatternsforinferringdifferentitemassociationsandprovidehuman-readableexplanation formodelprediction;2)recommendationmodulecanbeaugmented byinducedrulesandthushavebettergeneralizationabilitydealing with the cold-start issue. Extensive experiments1 show that our proposedmethodhasachievedsignificantimprovementsinitem recommendationoverbaselinesonreal-worlddatasets.Ourmodel demonstrates robust performance over “noisy" item knowledge graphs,generatedbylinkingitemnamestorelatedentities.