登录 注册
当前位置:主页 > 资源下载 > 50 > TuckER:Tensor Factorization for Knowledge Graph Completion.pdf下载

TuckER:Tensor Factorization for Knowledge Graph Completion.pdf下载

  • 更新:2024-05-18 11:39:08
  • 大小:393KB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:深度学习 - 人工智能
  • 格式:PDF

资源介绍

Knowledge graphs are structured representations of real world facts. However, they typically contain only a small subset of all possible facts. Link prediction is a task of inferring missing facts based on existing ones. We propose TuckER, a relatively simple but powerful linear model based on Tucker decomposition of the binary tensor representation of knowledge graph triples. TuckER outperforms all previous state-of-the-art models acrossstandardlinkpredictiondatasets. Weprove that TuckER is a fully expressive model, deriving the bound on its entity and relation embedding dimensionality for full expressiveness which is several orders of magnitude smaller than the bound of previous state-of-the-art models ComplEx and SimplE. We further show that several previously introducedlinearmodelscanbeviewedasspecial cases of TuckER.