登录 注册
当前位置:主页 > 资源下载 > 50 > 使用折叠式吉布斯采样在Matlab代码中实现Latent Dirichlet Allocation (LDA),以执行贝叶斯推断

使用折叠式吉布斯采样在Matlab代码中实现Latent Dirichlet Allocation (LDA),以执行贝叶斯推断

  • 更新:2024-07-14 22:48:08
  • 大小:683KB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:Matlab - 大数据
  • 格式:ZIP

资源介绍

吉布斯采样matlab代码Latent-Dirichlet-Allocation-LDA-(MATLAB中的代码) 自然语言处理算法 概率生成模型 Latent Dirichlet Allocation根据主题比例和单词比例对文档进行分类的方法 贝叶斯推断使用折叠的吉布斯采样 与传统的吉布斯采样器相比,收敛速度更快,错误率低 参考文献:托马斯·格里菲斯(Thomas L. Griffiths)和马克·史蒂佛斯(Mark Steyvers)发现科学课题(2004) 这里考虑的词汇大小为16,并使用4x4图像表示。 图像中的每个像素代表词汇表中的一个单词。 像素越亮,在文档/主题中的频率越高。 下图显示了8个主题作为单词分布的基本事实。 现在,使用这些主题生成了500个长度为100的文档。 图像下方显示了生成的文档示例。 现在,在这些生成的文档上运行了LDA(超过500次迭代),并发现了主题。 下面的屏幕快照显示了在初始迭代和最终迭代中发现的主题。 Theta地面真相值 范例文件 初始Phi迭代 最终Phi迭代 经过最终的迭代,发现的主题为: 它包含以下功能: 1)代码LDA Matlab