登录 注册
当前位置:主页 > 资源下载 > 50 > 基于改进的粒子群优化扩展卡尔曼滤_省略_锂电池模型参数辨识与荷电状态估计_项宇.pdf下载

基于改进的粒子群优化扩展卡尔曼滤_省略_锂电池模型参数辨识与荷电状态估计_项宇.pdf下载

  • 更新:2024-07-21 16:20:44
  • 大小:472KB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:交通 - 行业
  • 格式:PDF

资源介绍

摘要: 为解决锂电池荷电状态( SOC)难以精确估计的问题,提出了基于改进的粒子群优化扩 展卡尔曼滤波(IPSO-EKF)算法预测电池 SOC。为减小参数非线性特性影响,重新构建了 EKF 算 法电池状态空间方程,以辨识出的电池模型参数为基础,获得 SOC 最优估计。采用 IPSO 算法优化 EKF 算法噪声方差矩阵,解决系统状态误差协方差矩阵和测量噪声协方差矩阵最优解获取难题, 进一步提高 SOC 的估计精度。计算结果表明:IPSO-EKF 算法能够精确地辨识电池模型参数和 SOC 值,并能够很好地修正状态变量初始误差。