登录 注册
当前位置:主页 > 资源下载 > 6 > 使用rllab的多智能体强化学习算法:Multi-Agent-RL

使用rllab的多智能体强化学习算法:Multi-Agent-RL

  • 更新:2024-07-28 11:00:38
  • 大小:10.24MB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:其它 - 开发技术
  • 格式:ZIP

资源介绍

多主体强化学习(MARL) 使用rllab通过量化在不同环境中执行的多个代理的随机梯度来开发强化学习。 实验室 rllab是用于开发和评估强化学习算法的框架。 它包括各种各样的连续控制任务以及以下算法的实现: rllab与完全兼容。 有关说明和示例,请参见。 rllab仅正式支持Python 3.5+。 对于坐在Python 2上的rllab的旧快照,请使用。 rllab支持在EC2集群上运行强化学习实验以及用于可视化结果的工具。 有关详细信息,请参见。 主要模块使用作为基础框架,并且我们在下支持TensorFlow。 文献资料 在线提供了文档: https : //rllab.readthedocs.org/en/latest/ 。 引用rllab 如果您使用rllab进行学术研究,强烈建议您引用以下文章: 严端,陈曦,赖因·豪特霍夫特,约翰·舒尔曼,彼得·阿比尔。 “对