登录 注册
当前位置:主页 > 资源下载 > 50 > 基于RNN的时间序列异常检测器模型在Pytorch中的实现:RNN-Time-series-Anomaly-Detection

基于RNN的时间序列异常检测器模型在Pytorch中的实现:RNN-Time-series-Anomaly-Detection

  • 更新:2024-07-29 16:34:20
  • 大小:20.59MB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:数据集 - 行业研究
  • 格式:ZIP

资源介绍

RNN时间序列异常检测 在Pytorch中实现的基于RNN的时间序列异常检测器模型。 这是基于RNN的时间序列异常检测器的一种实现,它由时间序列预测和异常分数计算的两阶段策略组成。 要求 Ubuntu 16.04+(在Windows 10上报告了错误。请参阅。欢迎提出建议。) Python 3.5+ 火炬0.4.0+ 脾气暴躁的 Matplotlib Scikit学习 数据集 1.纽约市出租车乘客人数 提供的纽约市出租车乘客数据流 Cui,Yuwei等人进行了预处理(以30分钟为间隔汇总)。 在中 , 2.心电图(ECG) ECG数据集包含对应于心室前收缩的单个异常 3. 2D手势(视频监控) 视频中手势的XY坐标 4.呼吸 一个病人的呼吸(通过胸廓扩展测量,采样率10Hz) 5.航天飞机 航天飞机Marotta阀的时间序列 6.电力需求 荷兰研究机构一年的电力需求 时