登录 注册
当前位置:主页 > 资源下载 > 31 > 我尝试利用LSTM递归神经网络来预测Google的股票价格

我尝试利用LSTM递归神经网络来预测Google的股票价格

  • 更新:2024-07-29 19:36:20
  • 大小:690KB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:其它 - 开发技术
  • 格式:ZIP

资源介绍

递归神经网络预测Google股票价格 我试图使用LSTM预测Google股票价格 长短期记忆(LSTM)单元(或块)是递归神经网络(RNN)层的构建单元。 由LSTM单元组成的RNN通常称为LSTM网络。 常见的LSTM单元由单元,输入门,输出门和忘记门组成。 该单元负责在任意时间间隔内“记住”值。 因此,LSTM中的“内存”一词。 就像多层(或前馈)神经网络中一样,这三个门中的每一个都可以被认为是“常规”人工神经元:也就是说,它们计算加权和的激活(使用激活函数)。 从直觉上讲,它们可以看作是通过LSTM连接的值流的调节器。 因此表示“门”。 这些门与单元之间存在连接。 更好的预测模型的结果是: