登录 注册
当前位置:主页 > 资源下载 > 49 > BERT-NER-Pytorch项目实现中文NER任务,运用了BERT模型并结合Softmax、CRF和Span方法

BERT-NER-Pytorch项目实现中文NER任务,运用了BERT模型并结合Softmax、CRF和Span方法

  • 更新:2024-07-30 10:54:56
  • 大小:484KB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:数据集 - 行业研究
  • 格式:ZIP

资源介绍

使用Bert的中文NER BERT代表中文NER。 数据集列表 cner:数据集/ cner 主持人: : 型号清单 BERT + Softmax BERT + CRF BERT +跨度 需求 1.1.0 = <PyTorch <1.5.0 cuda = 9.0 python3.6 + 输入格式 输入格式(首选BIOS标记方案),每个字符的标签为一行。 句子用空行分隔。 美 B-LOC 国 I-LOC 的 O 华 B-PER 莱 I-PER 士 I-PER 我 O 跟 O 他 O 运行代码 在run_ner_xxx.py或run_ner_xxx.sh修改配置信息。 sh scripts/run_ner_xxx.sh 注意:模型的文件结构 ├── prev_trained_model | └── bert_base | | └── pytorch_model.bin | | └── config.json | | └── vocab.txt | | └── ...... CLUENER结果 BERT在dev上的整体性能: 准确性(实体) 召回(实