-
论文研究-基于KPCA-LSSVM的健康档案空腹血糖水平预测研究.pdf下载
资源介绍
糖尿病是一种可防可控的慢性疾病,会产生很多并发症,对人体危害很大,因此早期诊断糖尿病并干预生活方式对预防糖尿病慢性并发症十分必要。利用健康档案中数据来预测空腹血糖水平,因为空腹血糖水平的高低是早期诊断和干预的一个重要依据,但是健康档案中数据存在维度广、噪声多、强耦合、非线性等特点,为此提出了基于KPCA和LSSVM结合的方法进行建模,并将LSSVM、PCA-LSSVM、KPCA-LSSVM这3种模型进行比较,结果表明KPCA-LSSVM准确性比LSSVM、PCA-LSSVM大幅提高,ROC曲线的积分面积也接近于1,说明KPCA-LSSVM能够运用于空腹血糖的预测,也为医疗数据挖掘提供一种新的参考办法。
- 上一篇: 现有的LSSVM工具箱,自带PSO优化,参数无需调整
- 下一篇: LS-SVMlab-GA