-
运用时变PSO_SVM方法对混沌时间序列进行连续预测
资源介绍
针对粒子群优化(PSO)算法中适应度函数不可变的问题,提出一种改进时变 PSO 算法( TVPSO),其适应度函数可变, 利用 TVPSO 对最小二乘支持向量机( LSSVM)的参数进行优化,避免了人为选择参数的盲目性,提高了预测模型的在线预测能力。 建立基于 TVPSO -LSSVM 的连续预报模型,充分利用 LSSVM 的结构风险最小化与 TVPSO 粒子群算法全局、时变的特性,对非线性较强的混沌时间序列进行连续预报。仿真结果表明,该法运算速度快,适用于在线预报。
- 上一篇: lssvm分类系统
- 下一篇: 论文研究-基于FCM-LSSVM网络流量预测模型.pdf