登录 注册
当前位置:主页 > 资源下载 > 44 > 使用预训练模型对图像进行分类以检测乳腺癌细胞的Matlab代码-Breast_cancer_detection

使用预训练模型对图像进行分类以检测乳腺癌细胞的Matlab代码-Breast_cancer_detection

  • 更新:2024-07-31 10:02:02
  • 大小:630KB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:Matlab - 大数据
  • 格式:ZIP

资源介绍

图像矩阵matlab代码Breast_cancer_detection 使用预训练模型对图像进行分类以检测癌细胞 前提条件: Python2.7 MATLAB(LIBSVM) 脾气暴躁的,西皮,斯克莱恩 Tensorflow 1.0 Tflearn BreakHis的数据集位于:Davi Frossard的网页上正在使用VGG-16权重:这是他的干净入门教程: 我们尝试预先训练的网络和分类与从头开始的训练。 方法1:使用预先训练的VGG-16来获取功能。 运行vgg16_cv.py以从BreakHis数据集的每个图像中提取特征。 它将为每个图像在同一文件夹中创建一个功能文件 运行generate_features.py将所有单个要素文件组合为一个要素矩阵(mat文件)。 它还会创建一个单独的目标Mat文件。 运行CV_balancing_code.m处理数据不平衡。 它输出4个文件:训练数据,训练数据目标,测试数据和测试数据目标 使用classifier_code.m和RandomForest_CV.m使用线性SVM,多项式SVM和随机森林对数据进行分类。 方法2:运行alexnet.