-
基于协同过滤算法的实时电影推荐系统在Spark平台上的源代码
资源介绍
基于深度学习的监督学习,使用梯度下降、ALS、LFM算法,使用AngularJS2生成前端框架,数据库为MongoDB,使用ElasticSearch作为搜索服务器,Redis作为缓存数据库,其中包括Spark的离线统计服务、Azkaban的工作调度服务、Flume的日志采集服务、Kafka作为消息缓冲服务,全局采用Scala编写,Java作为Tomcat部署使用,实现离线推荐、实时推荐、服务器冷启动问题解决。
- 上一篇: python实现KNN算法
- 下一篇: 协同过滤代码实现