登录 注册
当前位置:主页 > 资源下载 > 34 > MovieLens数据集上应用协同过滤对电影推荐产生的影响-MATLAB代码

MovieLens数据集上应用协同过滤对电影推荐产生的影响-MATLAB代码

  • 更新:2024-08-05 16:47:08
  • 大小:2.53MB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:Matlab - 大数据
  • 格式:ZIP

资源介绍

matlab代码影响电影推荐 该资料库包含用Matlab编写的协作过滤推荐算法,该算法适用于。 MovieLens数据集 我决定要使用MovieLens数据集,因为它包含所有最新电影,所以我想自己尝试一下。 数据集已经整理好-我已经生成了新的电影ID以消除差距并更新了相应的评分,因此我可以在Matlab中更轻松地使用它们。 用户数:668 电影数量:10.329 评分的数量:105.339 每个用户平均评价158部电影 我使用了Coursera机器学习课程中的一些现有代码,主要用于计算成本函数。 参数 我了解到,调整以下参数会影响成本函数的值: 功能数量:较大的值可防止拟合不足 正则化:较大的值可防止过度拟合 模型将学习的特征数量会影响它将从数据集中收集多少信息。 我尝试在模型上使用30到60个功能。 使用50个特征来训练模型恰好是最合适的。 选择正则化参数lambda时,较小的值可能导致过度拟合或高方差。 当模型的成本函数值非常低,但不能很好地概括时,就是这种情况。 我尝试了从0.3到3.0的lambda值,使用1.0是最合适的。 测试? 我通过插入一些我看过的电影并对他们的评分来评