登录 注册
当前位置:主页 > 资源下载 > 37 > 基于深度卷积神经网络与迁移学习的鱼类分类识别.pdf下载

基于深度卷积神经网络与迁移学习的鱼类分类识别.pdf下载

  • 更新:2024-08-12 09:38:26
  • 大小:2.39MB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:深度学习 - 人工智能
  • 格式:PDF

资源介绍

高效的鱼类分类识别是海洋牧场智能化监测的基础 . 传统的通过浅层模型,利用目标特征 的分类识别方法效率低下,泛化性差,难以实现智能化应用;而重建并训练深度卷积神经网络(DCNN) 模型占用巨大的计算机资源 . 文章提出一种基于 DCNN 和迁移学习的方法,针对新图像数据集,通过选 择训练参数,对预训练模型进行再训练,实现鱼类的分类识别 . 通过实验证实,这种方法可在占用少量 的计算机资源情况下,达到 97.14% 的验证准确率 . 使用基于 DCNN 与参数迁移的学习策略可以得到性 能良好的深度神经网络鱼类分类识别模型 .