-
改进的卷积神经网络在行人检测中的应用_谢林江.pdf下载
资源介绍
针对当前行人检测方法计算量大,行人特征提取复杂,检测结果易受复杂背景影响等问题,提出一种
改进的卷积神经网络(convolutional neural network,CNN)模型。该模型在传统 CNN基础上加入选择性注意
层,模拟人眼的选择性注意功能,过滤复杂背景,突出行人特征。分别采用 LBP(local binary pattern)纹理处理
和梯度处理对选择性注意层进行训练,对比训练结果得到最优模型。分别在INRIA、NICTA和Daimler行人数
据集上进行实验,结果表明,该模型在行人检测中准确率明显优于传统 CNN、HOG+SVM、Haar+SVM、PCA+
SVM,在INRIA、NICTA和Daimler行人数据集上的准确率分别达到了96.14%、96.64%和99.78%。
- 上一篇: 840Dsl简明调试手册201409
- 下一篇: 融合社交网络信息的协同过滤方法 (2013年)