-
论文研究-一种混合粒子群优化模型的Web聚类方法.pdf下载
资源介绍
通过分析在电子商务环境下Web挖掘的现状,考虑到Web数据的海量性和高维度性对抽取隐含的、事先未知的知识所带来的复杂性和维数灾,在普通K均值聚类、PSO聚类和K均值与PSO混合聚类算法的基础上,提出了一种将主成分分析与PSO混合聚类算法相结合的模型来对Web服务器中的日志文件进行聚类分析,将抽取的相关Web数据进行主成分分析,分析结果作为PSO混合聚类算法的输入数据,这样不仅减少了输入变量的维数,减少聚类的规模,而且保留了原始变量的主要信息,消除变量之间的多重共线性,为具有海量性、高维度性、异构性等特点的