登录 注册
当前位置:主页 > 资源下载 > 2 > 机器学习算法总结PPT:监督学习与无监督学习下的分类与聚类

机器学习算法总结PPT:监督学习与无监督学习下的分类与聚类

  • 更新:2024-08-29 21:50:50
  • 大小:2.13MB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:算法与数据结构 - 大数据
  • 格式:PPT

资源介绍

分类与聚类,监督学习与无监督学习 在讲具体的分类和聚类算法之前,有必要讲一下什么是分类,什么是聚类,以及都包含哪些具体算法或问题。 Classification (分类),对于一个 classifier ,通常需要你告诉它“这个东西被分为某某类”这样一些例子,理想情况下,一个 classifier 会从它得到的训练集中进行“学习”,从而具备对未知数据进行分类的能力,这种提供训练数据的过程通常叫做 supervised learning (监督学习). Clustering(聚类),简单地说就是把相似的东西分到一组,聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起,因此,一个聚类算法通常只需要知道如何计算相似 度就可以开始工作了,因此 clustering 通常并不需要使用训练数据进行学习,这在 Machine Learning 中被称作 unsupervised learning (无监督学习).