-
基于卷积神经网络的农作物病虫害图像识别模型
资源介绍
中国是传统的农业大国, 农业不仅是国民经济建设与发展的基础, 也是社会正常稳定有序运行的保障. 然而每年由于农作物病虫害造成的损失巨大, 且传统的农作物病虫害识别方法效果并不理想. 同时近年深度学习飞速发展, 在图像分类与识别的方面取得了巨大进展. 因此本文通过基于深度学习的方法构建农作物病虫害图像识别模型, 并针对样本不平衡问题改进卷积网络损失函数. 实验证明该模型可以对农作物病虫害进行有效识别并且对损失函数进行优化后模型的准确率也进一步得到了提升.
- 上一篇: 基于深度学习的番茄病害检测系统
- 下一篇: Cisco Packet Tracer实验案例及源文件