登录 注册
当前位置:主页 > 资源下载 > 32 > 从零开始发表 Deep Learning 论文的必经之路:精选论文合集!

从零开始发表 Deep Learning 论文的必经之路:精选论文合集!

  • 更新:2024-09-13 12:40:56
  • 大小:84.91MB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:深度学习 - 人工智能
  • 格式:RAR

资源介绍

不管你想做什么,你都要好好的从论文看,而不是单纯的调论文写代码!通过这些学习,你才能真正的对深度学习的发展,模型的优化,进经典的trick有深入的理解! 做算法,做科研必不可少!时间有限的人可以只看1.3 2.1 2.2 !(强烈推荐!) ## 1.3 ImageNet Evolution(Deep Learning broke out from here) **[4]** Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "**Imagenet classification with deep convolutional neural networks**." Advances in neural information processing systems. 2012. [[pdf]](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf) **(AlexNet, Deep Learning Breakthrough)** :star::star::star::star::star: **[5]** Simonyan, Karen, and Andrew Zisserman. "**Very deep convolutional networks for large-scale image recognition**." arXiv preprint arXiv:1409.1556 (2014). [[pdf]](https://arxiv.org/pdf/1409.1556.pdf) **(VGGNet,Neural Networks become very deep!)** :star::star::star: **[6]** Szegedy, Christian, et al. "**Going deeper with convolutions**." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. [[pdf]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf) **(GoogLeNet)** :star::star::star: **[7]** He, Kaiming, et al. "**Deep residual learning for image recognition**." arXiv preprint arXiv:1512.03385 (2015). [[pdf]](https://arxiv.org/pdf/1512.03385.pdf) **(ResNet,Very very deep networks, CVPR best paper)** :star::star::star::star::star: #2 Deep Learning Method ## 2.1 Model **[14]** Hinton, Geoffrey E., et al. "**Improving neural networks by preventing co-adaptation of feature detectors**." arXiv preprint arXiv:1207.0580 (2012). [[pdf]](https://arxiv.org/pdf/1207.0580.pdf) **(Dropout)** :star::star::star: **[15]** Srivastava, Nitish, et al. "**Dropout: a simple way to prevent neural networks from overfitting**." Journal of Machine Learning Research 15.1 (2014): 1929-1958. [[pdf]](https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf) :star::star::star: **[16]** Ioffe, Sergey, and Christian Szegedy. "**Batch normalization: Accelerating deep network training by reducing internal covariate shift**." arXiv preprint arXiv:1502.03167 (2015). [[pdf]](http://arxiv.org/pdf/1502.03167) **(An outstanding Work in 2015)** :star::star::star::star: **[17]** Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "**Layer normalization**." arXiv preprint arXiv:1607.06450 (2016). [[pdf]](https://arxiv.org/pdf/1607.06450.pdf?utm_source=sciontist.com&utm_medium=refer&utm_campaign=promote) **(Update of Batch Normalization)** :star::star::star::star: **[18]** Courbariaux, Matthieu, et al. "**Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to+ 1 or−1**." [[pdf]](https://pdfs.semanticscholar.org/f832/b16cb367802609d91d400085eb87d630212a.pdf) **(New Model,Fast)** :star::star::star: **[19]** Jaderberg, Max, et al. "**Decoupled neural interfaces using synthetic gradients**." arXiv preprint arXiv:1608.05343 (2016). [[pdf]](https://arxiv.org/pdf/1608.05343) **(Innovation of Training Method,Amazing Work)** :star::star::star::star::star: **[20]** Chen, Tianqi, Ian Goodfellow, and Jonathon Shlens. "Net2net: Accelerating learning via knowledge transfer." arXiv preprint arXiv:1511.05641 (2015). [[pdf]](https://arxiv.org/abs/1511.05641) **(Modify previously trained network to reduce training epochs)** :star::star::star: **[21]** Wei, Tao, et al. "Network Morphism." arXiv preprint arXiv:1603.01670 (2016). [[pdf]](https://arxiv.org/abs/1603.01670) **(Modify previously trained network to reduce training epochs)** :star::star::star: ## 2.2 Optimization **[22]** Sutskever, Ilya, et al. "**On the importance of initialization and momentum in deep learning**." ICML (3) 28 (2013): 1139-1147. [[pdf]](http://www.jmlr.org/proceedings/papers/v28/sutskever13.pdf) **(Momentum optimizer)** :star::star: **[23]** Kingma, Diederik, and Jimmy Ba. "**Adam: A method for stochastic optimization**." arXiv preprint arXiv:1412.6980 (2014). [[pdf]](http://arxiv.org/pdf/1412.6980) **(Maybe used most often currently)** :star::star::star: **[24]** Andrychowicz, Marcin, et al. "**Learning to learn by gradient descent by gradient descent**." arXiv preprint arXiv:1606.04474 (2016). [[pdf]](https://arxiv.org/pdf/1606.04474) **(Neural Optimizer,Amazing Work)** :star::star::star::star::star: **[25]** Han, Song, Huizi Mao, and William J. Dally. "**Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding**." CoRR, abs/1510.00149 2 (2015). [[pdf]](https://pdfs.semanticscholar.org/5b6c/9dda1d88095fa4aac1507348e498a1f2e863.pdf) **(ICLR best paper, new direction to make NN running fast,DeePhi Tech Startup)** :star::star::star::star::star: **[26]** Iandola, Forrest N., et al. "**SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size**." arXiv preprint arXiv:1602.07360 (2016). [[pdf]](http://arxiv.org/pdf/1602.07360) **(Also a new direction to optimize NN,DeePhi Tech Startup)** :star::star::star::star: