登录 注册
当前位置:主页 > 资源下载 > 49 > 使用深度学习在卫星图像上对作物进行分类(Crop Classification)

使用深度学习在卫星图像上对作物进行分类(Crop Classification)

  • 更新:2024-09-13 15:24:32
  • 大小:3.76MB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:其它 - 开发技术
  • 格式:ZIP

资源介绍

利用多时相卫星图像进行农作物分类 该仓库提供了使用多时相卫星图像进行农作物分类的代码。 作物分类对于理解作物的供应很重要。 卫星图像有助于实时监测作物生长和健康状况。 如今,每天都有高分辨率的卫星图像。 利用高频数据和多个波段,可以使用深度学习对农作物进行分类。 有许多经典的机器学习农作物分类方法可用它使用单时间图像,并使用其结果精度相对较低作物的光谱特性和结构特性,但我们会使用由玫瑰M. Rustowicz笔者建议的方法 安装 conda create --name geo_py37 python=3.7 conda install gdal rasterio conda install numpy pandas geopandas scikit-learn jupyterlab matplotlib seaborn xarray rasterstats tqdm pytest sq