-
基于GSO优化MF的模糊关联规则挖掘方法在不确定性数据中的应用
资源介绍
针对不确定性数据中模糊关联规则的挖掘问题,提出一种基于群搜索优化(GSO)算法优化隶属度函数(MF)的模糊关联规则挖掘方法。首先,将不确定性数据通过三元语言表示模型进行表示;然后,给定一个初始MF,并以最大化模糊项集支持度和语义可解释性作为适应度函数,通过GSO算法的优化学习获得最佳MF;最后,根据获得的最佳MF,利用改进型的FFP-growth算法来从不确定数据中挖掘模糊关联规则。实验结果表明,该方法能够根据数据集自适应优化MF,以此实现从不确定数据中有效地挖掘关联规则。
- 上一篇: GSO群搜索优化算法(Group Search Optimizer)及其改进算法
- 下一篇: gso