登录 注册
当前位置:主页 > 资源下载 > 41 > fine_tuning_data.zip 可直接用bert进行微调的中文情绪数据下载

fine_tuning_data.zip 可直接用bert进行微调的中文情绪数据下载

  • 更新:2024-05-28 20:28:14
  • 大小:599KB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:深度学习 - 人工智能
  • 格式:ZIP

资源介绍

具体使用方法可以看我的博客:https://blog.****.net/weixin_40015791/article/details/90410083 下面也会简单介绍一下:在bert开源代码中的run_classifier.py中找到 processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mrpc": MrpcProcessor, "xnli": XnliProcessor, "intentdetection":IntentDetectionProcessor, "emotion":EmotionProcessor, #新加上这一行 } 然后在该文件中增加一个class: class EmotionProcessor(DataProcessor): """Processor for the MRPC data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "fine_tuning_train_data.tsv")), "train") #此处的名字和文件夹中的训练集的名字要保持一致 def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "fine_tuning_val_data.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "fine_tuning_test_data.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1","2","3","4","5","6"] #七分类则从0到6 def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) if set_type == "test": label = "0" text_a = tokenization.convert_to_unicode(line[0]) else: label = tokenization.convert_to_unicode(line[0]) text_a = tokenization.convert_to_unicode(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples 最后直接调用即可,运行的命令如下: python run_classifier.py \ --task_name=emotion \ --do_train=true \ --do_eval=true \ --data_dir=data \ #把数据解压到同一级的文件夹中,此处是该文件夹名字data --vocab_file=chinese_L-12_H-768_A-12/vocab.txt \ #中文数据要微调的原始bert模型 --bert_config_file=chinese_L-12_H-768_A-12/bert_config.json \ --init_checkpoint=chinese_L-12_H-768_A-12/bert_model.ckpt \ --max_seq_length=128 \ --train_batch_size=32 \ --learning_rate=2e-5 \ --num_train_epochs=3.0 \ --output_dir=output #生成文件所在的文件夹 大概9个小时,最后文件夹中会有三个文件 后缀分别为index/meta/00000-of-00001,分别将这个改成bert_model.ckpt.index/bert_model.ckpt.meta/bert_model.ckpt.data-00000-of-00001,再在同一个文件夹中放入chinese_L-12_H-768_A-12中的vocab.txt和bert_config.json 即最后该文件夹中有5个文件。然后像调用chinese_L-12_H-768_A-12一样将文件夹名改成自己的文件夹名即可。 bert-serving-start -model_dir output -num_worfer=3 即可调用微调后的语言通用模型。