-
Keyframe-Based Visual-Inertial Odometry Using Nonlinear Optimization.pdf下载
资源介绍
Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities
offer complementary characteristics that make them the ideal choice for accurate Visual-Inertial Odometry or Simultaneous
Localization and Mapping (SLAM). While historically the problem has been addressed with filtering, advancements in
visual estimation suggest that non-linear optimization offers superior accuracy, while still tractable in complexity thanks
to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic
cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus
ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization.
Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation
results on complementary datasets recorded with our custom-built stereo visual-inertial hardware that accurately synchronizes
accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our
algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the
performance to an implementation of a state-of-the-art stochasic cloning sliding-window filter. This competititve reference
implementation performs tightly-coupled filtering-based visual-inertial odometry. While our approach declaredly demands
more computation, we show its superior performance in terms of accuracy.