登录 注册
当前位置:主页 > 资源下载 > 10 > 论文研究-海量数据环境下用于入侵检测的深度学习方法.pdf下载

论文研究-海量数据环境下用于入侵检测的深度学习方法.pdf下载

  • 更新:2024-10-16 13:24:32
  • 大小:1.18MB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:数据集 - 行业研究
  • 格式:PDF

资源介绍

针对传统浅层机器学习方法无法有效解决海量入侵数据的分类问题,提出了一种基于深度信念网络的多类支持向量机入侵检测(DBN-MSVM)方法。该方法利用深度信念网络对大量高维、非线性的无标签原始数据进行特征降维,从而获得原始数据的最优低维表示;利用二叉树构造多类支持向量机分类器,并对获得的最优低维表示进行网络攻击行为识别。最后在KDD’ 99数据集上进行实验仿真,DBN-MSVM方法可缩短支持向量机分类器的训练时间和测试时间,提高了海量入侵数据的分类准确率。