-
论文研究-海量数据环境下用于入侵检测的深度学习方法.pdf下载
资源介绍
针对传统浅层机器学习方法无法有效解决海量入侵数据的分类问题,提出了一种基于深度信念网络的多类支持向量机入侵检测(DBN-MSVM)方法。该方法利用深度信念网络对大量高维、非线性的无标签原始数据进行特征降维,从而获得原始数据的最优低维表示;利用二叉树构造多类支持向量机分类器,并对获得的最优低维表示进行网络攻击行为识别。最后在KDD’ 99数据集上进行实验仿真,DBN-MSVM方法可缩短支持向量机分类器的训练时间和测试时间,提高了海量入侵数据的分类准确率。