-
Comprehensive Mathematics for Computer Scientists 2nd ed [Vol 2]下载
资源介绍
III Topology and Calculus 1
27 Limits and Topology 3
27.1Introduction............................................. 3
27.2Topologies on Real Vector Spaces........................ 4
27.3Continuity............................................... 14
27.4Series ................................................... 21
27.5Euler’s Formula for Polyhedra and Kuratowski’s Theorem 30
28 Di?erentiability 37
28.1Introduction............................................. 37
28.2Di?erentiation .......................................... 39
28.3Taylor’s Formula ........................................ 53
29 Inverse and Implicit Functions 59
29.1Introduction............................................. 59
29.2TheInverseFunctionTheorem........................... 60
29.3TheImplicitFunctionTheorem .......................... 64
30 Integration 73
30.1Introduction............................................. 73
30.2Partitions and the Integral ............................... 74
30.3Measure and Integrability................................ 81
31 The Fundamental Theorem of Calculus and Fubini’s Theorem 87
31.1Introduction............................................. 87
31.2The Fundamental Theorem of Calculus .................. 88
31.3Fubini’s Theorem on Iterated Integration................. 92
32 Vector Fields 97
32.1Introduction............................................. 97
32.2VectorFields ............................................ 98
VIII Contents
33 Fixpoints 105
33.1Introduction............................................. 105
33.2Contractions ............................................ 105
34 Main Theorem of ODEs 113
34.1Introduction............................................. 113
34.2Conservative and Time-Dependent Ordinary
Di?erential Equations: The Local Setup .................. 114
34.3The Fundamental Theorem: Local Version................ 115
34.4The Special Case of a Linear ODE ........................ 117
34.5The Fundamental Theorem: Global Version .............. 119
35 Third Advanced Topic 125
35.1Introduction............................................. 125
35.2NumericsofODEs....................................... 125
35.3TheEulerMethod ....................................... 129
35.4Runge-KuttaMethods.................................... 131
IV Selected Higher Subjects 137
36 Categories 139
36.1Introduction............................................. 139
36.2What Categories Are..................................... 140
36.3Examples................................................ 143
36.4Functors and Natural Transformations................... 147
36.5Limits and Colimits...................................... 153
36.6Adjunction.............................................. 159
37 Splines 161
37.1Introduction............................................. 161
37.2PreliminariesonSimplexes .............................. 161
37.3WhatareSplines?........................................ 164
37.4LagrangeInterpolation .................................. 168
37.5Bézier Curves ........................................... 171
37.6Tensor Product Splines .................................. 176
37.7B-Splines ................................................ 179
38 Fourier Theory 183
38.1Introduction............................................. 183
38.2Spaces of Periodic Functions............................. 185
38.3Orthogonality ........................................... 188
Contents IX
38.4Fourier’s Theorem....................................... 191
38.5Restatement in Terms of the Sine and Cosine Functions.. 194
38.6Finite Fourier Series and Fast Fourier Transform ......... 200
38.7Fast Fourier Transform (FFT) ............................ 204
38.8The Fourier Transform .................................. 209
39 Wavelets 215
39.1Introduction............................................. 215
2
39.2The Hilbert Space L
(R) ................................. 217
39.3Frames and Orthonormal Wavelet Bases ................. 221
39.4The Fast Haar Wavelet Transform........................ 225
40 Fractals 231
40.1Introduction............................................. 231
40.2Hausdor?-Metric Spaces ................................. 232
40.3Contractions on Hausdor?-Metric Spaces ................ 236
40.4FractalDimension....................................... 242
41 Neural Networks 253
41.1Introduction............................................. 253
41.2Formal Neurons ......................................... 254
41.3Neural Networks ........................................ 264
41.4Multi-Layered Perceptrons ............................... 269
41.5The Back-Propagation Algorithm......................... 272
42 Probability Theory 279
42.1Introduction............................................. 279
42.2EventSpacesandRandomVariables ..................... 279
42.3Probability Spaces ....................................... 283
42.4Distribution Functions................................... 290
42.5Expectation and Variance................................ 299
42.6IndependenceandtheCentralLimitTheorem............ 306
42.7ARemarkonInferentialStatistics ....................... 310
43 Lambda Calculus 313
43.1Introduction............................................. 313
43.2TheLambdaLanguage................................... 314
43.3Substitution ............................................. 316
43.4Alpha-Equivalence....................................... 318
43.5Beta-Reduction.......................................... 320
43.6The λ-Calculus as a Programming Language.............. 326
X Contents
43.7Recursive Functions ..................................... 328
43.8Representation of Partial Recursive Functions............ 331
A Further Reading 335
B Bibliography 337
Index 341
- 上一篇: linux0.11_Source_Image
- 下一篇: linux源代码