当前位置:主页
> 资源下载 > 10 > 一本基于matlab的数理统计电子书-Crc Press - Computational Statistics Handbook With Matlab -.part2.rar下载
-
一本基于matlab的数理统计电子书-Crc Press - Computational Statistics Handbook With Matlab -.part2.rar下载
资源介绍
一本基于matlab的数理统计电子书-Crc Press - Computational Statistics Handbook With Matlab -.part2.rar
希望对大家有所帮助:)
Table of Contents
Preface
Chapter 1
Introduction
1.1 What Is Computational Statistics?
1.2 An Overview of the Book
Philosophy
What Is Covered
A Word About Notation
1.3 MATLAB Code
Computational Statistics Toolbox
Internet Resources
1.4 Further Reading
Chapter 2
Probability Concepts
2.1 Introduction
2.2 Probability
Background
Probability
Axioms of Probability
2.3 Conditional Probability and Independence
Conditional Probability
Independence
Bayes Theorem
2.4 Expectation
Mean and Variance
Skewness
Kurtosis
2.5 Common Distributions
Binomial
Poisson
Uniform
Normal
Exponential
Gamma
Chi-Square
Weibull
Beta
Multivariate Normal
2.6 MATLAB Code
2.7 Further Reading
Exercises
Chapter 3
Sampling Concepts
3.1 Introduction
3.2 Sampling Terminology and Concepts
Sample Mean and Sample Variance
Sample Moments
Covariance
3.3 Sampling Distributions
3.4 Parameter Estimation
Bias
Mean Squared Error
Relative Efficiency
Standard Error
Maximum Likelihood Estimation
Method of Moments
3.5 Empirical Distribution Function
Quantiles
3.6 MATLAB Code
3.7 Further Reading
Exercises
Chapter 4
Generating Random Variables
4.1 Introduction
4.2 General Techniques for Generating Random Variables
Uniform Random Numbers
Inverse Transform Method
Acceptance-Rejection Method
4.3 Generating Continuous Random Variables
Normal Distribution
Exponential Distribution
Gamma
Chi-Square
Beta
Multivariate Normal
Generating Variates on a Sphere
4.4 Generating Discrete Random Variables
Binomial
Poisson
Discrete Uniform
4.5 MATLAB Code
4.6 Further Reading
Exercises
Chapter 5
Exploratory Data Analysis
5.1 Introduction
5.2 Exploring Univariate Data
Histograms
Stem-and-Leaf
Quantile-Based Plots - Continuous Distributions
Q-Q Plot
Quantile Plots
Quantile Plots - Discrete Distributions
Poissonness Plot
Binomialness Plot
Box Plots
5.3 Exploring Bivariate and Trivariate Data
Scatterplots
Surface Plots
Contour Plots
Bivariate Histogram
3-D Scatterplot
5.4 Exploring Multi-Dimensional Data
Scatterplot Matrix
Slices and Isosurfaces
Star Plots
Andrews Curves
Parallel Coordinates
Projection Pursuit
Projection Pursuit Index
Finding the Structure
Structure Removal
Grand Tour
5.5 MATLAB Code
5.6 Further Reading
Exercises
Chapter 6
Monte Carlo Methods for Inferential Statistics
6.1 Introduction
6.2 Classical Inferential Statistics
Hypothesis Testing
Confidence Intervals
6.3 Monte Carlo Methods for Inferential Statistics
Basic Monte Carlo Procedure
Monte Carlo Hypothesis Testing
Monte Carlo Assessment of Hypothesis Testing
6.4 Bootstrap Methods
General Bootstrap Methodology
Bootstrap Estimate of Standard Error
Bootstrap Estimate of Bias
Bootstrap Confidence Intervals
Bootstrap Standard Confidence Interval
Bootstrap-t Confidence Interval
Bootstrap Percentile Interval
6.5 MATLAB Code
6.6 Further Reading
Exercises
Chapter 7
Data Partitioning
7.1 Introduction
7.2 Cross-Validation
7.3 Jackknife
7.4 Better Bootstrap Confidence Intervals
7.5 Jackknife-After-Bootstrap
7.6 MATLAB Code
7.7 Further Reading
Exercises
Chapter 8
Probability Density Estimation
8.1 Introduction
8.2 Histograms
1-D Histograms
Multivariate Histograms
Frequency Polygons
Averaged Shifted Histograms
8.3 Kernel Density Estimation
Univariate Kernel Estimators
Multivariate Kernel Estimators
8.4 Finite Mixtures
Univariate Finite Mixtures
Visualizing Finite Mixtures
Multivariate Finite Mixtures
EM Algorithm for Estimating the Parameters
Adaptive Mixtures
8.5 Generating Random Variables
8.6 MATLAB Code
8.7 Further Reading
Exercises
Chapter 9
Statistical Pattern Recognition
9.1 Introduction
9.2 Bayes Decision Theory
Estimating Class-Conditional Probabilities: Parametric Method
Estimating Class-Conditional Probabilities: Nonparametric
Bayes Decision Rule
Likelihood Ratio Approach
9.3 Evaluating the Classifier
Independent Test Sample
Cross-Validation
Receiver Operating Characteristic Curve
9.4 Classification Trees
Growing the Tree
Pruning the Tree
Choosing the Best Tree
Selecting the Best Tree Using an Independent Test Sample
Selecting the Best Tree Using Cross-Validation
9.5 Clustering
Measures of Distance
Hierarchical Clustering
K-Means Clustering
9.6 MATLAB Code
9.7 Further Reading
Exercises
Chapter 10
Nonparametric Regression
10.1 Introduction
10.2 Smoothing
Loess
Robust Loess Smoothing
Upper and Lower Smooths
10.3 Kernel Methods
Nadaraya-Watson Estimator
Local Linear Kernel Estimator
10.4 Regression Trees
Growing a Regression Tree
Pruning a Regression Tree
Selecting a Tree
10.5 MATLAB Code
10.6 Further ReadingExercises
Chapter 11
Markov Chain Monte Carlo Methods
11.1 Introduction
11.2 Background
Bayesian Inference
Monte Carlo Integration
Markov Chains
Analyzing the Output
11.3 Metropolis-Hastings Algorithms
Metropolis-Hastings Sampler
Metropolis Sampler
Independence Sampler
Autoregressive Generating Density
11.4 The Gibbs Sampler
11.5 Convergence Monitoring
Gelman and Rubin Method
Raftery and Lewis Method
11.6 MATLAB Code
11.7 Further Reading
Exercises
Chapter 12
Spatial Statistics
12.1 Introduction
What Is Spatial Statistics?
Types of Spatial Data
Spatial Point Patterns
Complete Spatial Randomness
12.2 Visualizing Spatial Point Processes
12.3 Exploring First-order and Second-order Properties
Estimating the Intensity
Estimating the Spatial Dependence
Nearest Neighbor Distances - G and F Distributions
K-Function
12.4 Modeling Spatial Point Processes
Nearest Neighbor Distances
K-Function
12.5 Simulating Spatial Point Processes
Homogeneous Poisson Process
Binomial Process
Poisson Cluster Process
Inhibition Process
Strauss Process
12.6 MATLAB Code
12.7 Further Reading
Exercises
Appendix A
Introduction to MATLAB
A.1 What Is MATLAB?
A.2 Getting Help in MATLAB
A.3 File and Workspace Management
A.4 Punctuation in MATLAB
A.5 Arithmetic Operators
A.6 Data Constructs in MATLAB
Basic Data Constructs
Building Arrays
Cell Arrays
A.7 Script Files and Functions
A.8 Control Flow
For Loop
While Loop
If-Else Statements
Switch Statement
A.9 Simple Plotting
A.10 Contact Information
Appendix B
Index of Notation
Appendix C
Projection Pursuit Indexes
C.1 Indexes
Friedman-Tukey Index
Entropy Index
Moment Index
Distances
C.2 MATLAB Source Code
Appendix D
MATLAB Code
D.1 Bootstrap Confidence Interval
D.2 Adaptive Mixtures Density Estimation
D.3 Classification Trees
D.4 Regression Trees
Appendix E
MATLAB Statistics Toolbox
Appendix F
Computational Statistics Toolbox
Appendix G
Data Sets
References