登录 注册
当前位置:主页 > 资源下载 > 31 > EM算法应用于抛硬币问题

EM算法应用于抛硬币问题

  • 更新:2024-11-07 14:14:20
  • 大小:146KB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:机器学习 - 人工智能
  • 格式:RAR

资源介绍

Excel来解释公式,简单容易理解 这是一个抛硬币的例子,H表示正面向上,T表示反面向上,参数θ表示正面朝上的概率。硬币有两个,A和B,硬币是有偏的。本次实验总共做了5组,每组随机选一个硬币,连续抛10次。如果知道每次抛的是哪个硬币,那么计算参数θ就非常简单了,如上图所示。 如果不知道每次抛的是哪个硬币呢?那么,我们就需要用EM算法,基本步骤为:1、给θA和θB一个初始值;2、(E-step)估计每组实验是硬币A的概率(本组实验是硬币B的概率=1-本组实验是硬币A的概率)。分别计算每组实验中,选择A硬币且正面朝上次数的期望值,选择B硬币且正面朝上次数的期望值;3、(M-step)利用第三步求得的期望值重新计算θA和θB;4、当迭代到一定次数,或者算法收敛到一定精度,结束算法,否则,回到第2步。