资源介绍
Game physics
------------------------
本书更像是一本物理学概论,游戏开发的部分偏少,下与不下你自己定夺。
----------------------------------------
Trademarks
Figures
Tables
Preface
About the CD-ROM
INTRODUCTION
1.1 a brief history of the world
1.2 a summary of the topics
1.3 Examples and Exercises
Basic Concepts from Physics
2.1 Rigid body Classification
2.2 Rigid body Kinematics
2.2.1 Single Particle
2.2.2 Particle Systems and Continuous Materials
2.3 Newton's Laws
2.4 Forces
2.4.1 Gravitational Forces
2.4.2 Spring Forces
2.4.3 Friction and Other Dissipative Forces
2.4.4
2.4.5
Torque
Equilibrium
2.5 Momenta
2.5.1
2.5.2
2.5.3
2.5.4
Linear Momentum
Angular Momentum
Center of Mass
Moments and Products of Inertia
2.5.5 Mass and Inertia Tensor of a Solid Polyhedron
viii Contents
2.6 Energy 79
2.6.1 Work and Kinetic Energy 79
2.6.2 Conservative Forces and Potential Energy 81
Chapter
Rigid Body motion 87
3.1 Newtonian dynamics 88
3.2 Lagrangian dynamics 100
3.2.1 Equations of Motion for a Particle 102
3.2.2 Time-Varying Frames or Constraints 114
3.2.3 Interpretation of the Equations of Motion 117
3.2.4 Equations of Motion for a System of Particles 118
3.2.5 Equations of Motion for a Continuum of Mass 121
3.2.6 Examples with Conservative Forces 133
3.2.7 Examples with Dissipative Forces 139
3.3 Euler's Equations of motion 152
Chapter
*T DEFORMABLE BODIES 161
4.1 Elasticity, stress, and strain 161
4.2 Mass-Spring Systems 164
4.2.1 One-Dimensional Array of Masses 164
4.2.2 Two-Dimensional Array of Masses 166
4.2.3 Three-Dimensional Array of Masses 170
4.2.4 Arbitrary Configurations 171
4.3 Control point deformation 173
4.3.1 B-Spline Curves 173
4.3.2 NURBS Curves 183
4.3.3 B-Spline Surfaces 187
4.3.4 NURBS Surfaces 188
4.3.5 Surfaces Built from Curves 190
4.4 Free-Form deformation 197
4.5 Implicit Surface deformation 203
4.5.1 Level Set Extraction 206
4.5.2 Isocurve Extraction in 2D Images 208
4.5.3 Isosurface Extraction in 3D Images 212
Contents IX
Chapter
Physics Engines
5.1 Unconstrained Motion 223
5.1.1 An Illustrative Implementation 228
5.1.2 A Practical Implementation 234
5.2 Constrained Motion 240
5.2.1 Collision Points 240
5.2.2 Collision Response for Colliding Contact 242
5.2.3 Collision Response for Resting Contact
5.2.4 An Illustrative Implementation 270
5.2.5 Lagrangian Dynamics 278
5.3 Collision detection with Convex polyhedra 280
5.3.1 The Method of Separating Axes 284
5.3.2 Stationary Objects 286
5.3.3 Objects Moving with Constant Linear Velocity 311
5.3.4 Oriented Bounding Boxes 334
5.3.5 Boxes Moving with Constant Linear and Angular Velocity 342
5.4 Collision Culling: Spatial and Temporal Coherence 348
5.4.1 Culling with Bounding Spheres 349
5.4.2 Culling with Axis-Aligned Bounding Boxes 354
5.5 Variations 361
Chapter
Physics and Shader Programs
6.1 Introduction
6.2 vertex and pixel shaders
6.3 Deformation by vertex Displacement
6.4 Skin-and-Bones Animation
6.5 Rippling Ocean Waves
6.6 Refraction
6.7 Fresnel reflectance
6.8 Iridescence
X Contents
Chapter
7
Chapter
Chapter
Linear Complementarity and Mathematical
Programming
7.1 Linear programming
7.1.1 A Two-Dimensional Example
7.1.2 Solution by Pairwise Intersections
7.1.3 Statement of the General Problem
7.1.4 The Dual Problem
7.2 The Linear Complementarity problem
7.2.1 The Lemke-Howson Algorithm
7.2.2 Zero Constant Terms
7.2.3 The Complementary Variable Cannot Leave the Dictionary
7.3 Mathematical Programming
7.3.1 Karush-Kuhn-Tucker Conditions
7.3.2 Convex Quadratic Programming
7.3.3 General Duality Theory
7.4 Applications
7.4.1 Distance Calculations
7.4.2 Contact Forces
Differential Equations
8.1 First-Order Equations
8.2 Existence, Uniqueness, and Continuous dependence
8.3 Second-order Equations
8.4 General-Order Differential Equations
8.5 Systems of Linear Differential Equations
8.6 Equilibria and Stability
8.6.1 Stability for Constant-Coefficient Linear Systems
8.6.2 Stability for General Autonomous Systems
Numerical methods
9.1 euler's method
9.2 Higher-Order Taylor Methods
Contents XI
9.3 METHODS VIA AN INTEGRAL FORMULATION 462
9.4 RUNGE-KUTTA METHODS 465
9.4.1 Second-Order Methods 466
9.4.2 Third-Order Methods 468
9.4.3 Fourth-Order Method 469
9.5 multistep methods 470
9.6 Predictor-Corrector methods 472
9.7 Extrapolation methods 473
9.7.1 Richardson Extrapolation 473
9.7.2 Application to Differential Equations 474
9.7.3 Polynomial Interpolation and Extrapolation 476
9.7.4 Rational Polynomial Interpolation and Extrapolation 476
9.7.5 Modified Midpoint Method 477
9.7.6 Bulirsch-Stoer Method 478
9.8 VERLET INTEGRATION 478
9.8.1 Forces without a Velocity Component 479
9.8.2 Forces with a Velocity Component 480
9.8.3 Simulating Drag in the System 481
9.8.4 Leap Frog Method 481
9.8.5 Velocity Verlet Method 483
9.8.6 Gear's Fifth-Order Predictor-Corrector Method 485
9.9 Numerical Stability and its relationship to Physical
Stability 487
9.9.1 Stability for Single-Step Methods 488
9.9.2 Stability for Multistep Methods 490
9.9.3 Choosing a Stable Step Size 491
9.10 Stiff Equations 503
Chapter
Quaternions 507
10.1 rotation Matrices 507
10.2 The Classical Approach 512
10.2.1 Algebraic Operations 512
10.2.2 Relationship of Quaternions to Rotations 515
10.3 A Linear Algebraic Approach 517
Xll Contents
10.4 From rotation Matrices to Quaternions 522
Contributed by Ken Shoetnake
10.4.1 2D Rotations 523
10.4.2 Linearity 525
10.4.3 3D Rotations: Geometry 526
10.4.4 4D Rotations 529
10.4.5 3D Rotations: Algebra 531
10.4.6 4D Matrix 534
10.4.7 Retrospect, Prospect 538
10.5 Interpolation of Quaternions 539
10.5.1 Spherical Linear Interpolation 539
10.5.2 Spherical Quadrangle Interpolation 541
10.6 Derivatives of Time-Varying Quaternions 543
Appendix
Linear Algebra 545
A.1 A REVIEW OF NUMBER SYSTEMS 545
A. 1.1 The Integers 545
A. 1.2 The Rational Numbers 545
A. 1.3 The Real Numbers 546
A. 1.4 The Complex Numbers 546
A. 1.5 Fields 547
A.2 Systems of Linear Equations 548
A.2.1 A Closer Look at Two Equations in Two Unknowns 551
A.2.2 Gaussian Elimination and Elementary Row Operations 554
A.2.3 Nonsquare Systems of Equations 558
A.2.4 The Geometry of Linear Systems 559
A.2.5 Numerical Issues 562
A.2.6 Iterative Methods for Solving Linear Systems 565
A.3 Matrices 566
A.3.1 Some Special Matrices 569
A.3.2 Elementary Row Matrices 570
A.3.3 Inverse Matrices 572
A.3.4 Properties of Inverses 574
A.3.5 Construction of Inverses 575
A.3.6 LU Decomposition 577
A.4 Vector Spaces 583
A.4.1 Definition of a Vector Space 588
A.4.2 Linear Combinations, Spans, and Subspaces 593
Contents ХШ
A.4.3 Linear Independence and Bases 595
A.4.4 Inner Products, Length, Orthogonality, and Projection 601
A.4.5 Dot Product, Cross Product, and Triple Products 606
A.4.6 Orthogonal Subspaces 613
A.4.7 The Fundamental Theorem of Linear Algebra 616
A.4.8 Projection and Least Squares 621
A.4.9 Linear Transformations 624
A.5 Advanced Topics 634
A.5.1 Determinants 634
A.5.2 Eigenvalues and Eigenvectors 646
A.5.3 Eigendecomposition for Symmetric Matrices 652
A.5.4 S + N Decomposition 655
A.5.5 Applications 661
Appendix
Д5 Affine Algebra 669
B.I Introduction 669
B.2 Coordinate Systems 673
B.3 Subspaces 675
B.4 Transformations 676
B.5 Barycentric Coordinates 677
B.5.1 Triangles 678
B.5.2 Tetrahedra 679
B.5.3 Simplices 680
B.5.4 Length, Area, Volume, and Hypervolume 681
Appendix
Calculus 691
C.I Univariate Calculus 692
UNIVARIATE CALCULUS
C.1.1
С 1.2
C.1.3
С 1.4
C.1.5
С 1.6
Limits
Limits of a Sequence
Continuity
Differentiation
LHopital's Rule
Integration
xiv Contents
C.2 MULTIVARIATE CALCULUS 704
C.2.1 Limits and Continuity 704
C.2.2 Differentiation 705
C.2.3 Integration 708
C.3 Applications 710
C.3.1 Optimization 711
C.3.2 Constrained Optimization 715
C.3.3 Derivative Approximations by Finite Differences 718
APPENDIX
Ordinary Difference Equations 727
D.I Definitions 727
D.2 Linear Equations 730
D.2.1 First-Order Linear Equations 730
D.2.2 Second-Order Linear Equations 731
D.3 Constant-Coefficient equations 734
D.4 Systems of Equations 736
Bibliography 739
index
- 上一篇: grin lens筆記
- 下一篇: unity 水 Easy Water