登录 注册
当前位置:主页 > 资源下载 > 20 > tf.keras.datasets数据源下载

tf.keras.datasets数据源下载

  • 更新:2024-12-01 09:52:02
  • 大小:700.23MB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:深度学习 - 人工智能
  • 格式:ZIP

资源介绍

boston_housing module: Boston housing price regression dataset. cifar10 module: CIFAR10 small images classification dataset. cifar100 module: CIFAR100 small images classification dataset. fashion_mnist module: Fashion-MNIST dataset. imdb module: IMDB sentiment classification dataset. mnist module: MNIST handwritten digits dataset. reuters module: Reuters topic classification dataset. import tensorflow as tf from tensorflow import keras fashion_mnist = keras.datasets.fashion_mnist (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data() mnist = keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() cifar100 = keras.datasets.cifar100 (x_train, y_train), (x_test, y_test) = cifar100.load_data() cifar10 = keras.datasets.cifar10 (x_train, y_train), (x_test, y_test) = cifar10.load_data() imdb = keras.datasets.imdb (x_train, y_train), (x_test, y_test) = imdb.load_data() # word_index is a dictionary mapping words to an integer index word_index = imdb.get_word_index() # We reverse it, mapping integer indices to words reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) # We decode the review; note that our indices were offset by 3 # because 0, 1 and 2 are reserved indices for "padding", "start of sequence", and "unknown". decoded_review = ' '.join([reverse_word_index.get(i - 3, '?') for i in x_train[0]]) print(decoded_review) boston_housing = keras.datasets.boston_housing (x_train, y_train), (x_test, y_test) = boston_housing.load_data() reuters= keras.datasets.reuters (x_train, y_train), (x_test, y_test) = reuters.load_data() tf.keras.datasets.reuters.get_word_index( path='reuters_word_index.json' )