-
Graphics Gems (Vol.2)下载
资源介绍
Foreword
By Andrew Glassner xvii
Preface xix
Mathematical Notation xxi
Pseudo-Code xxiii
Contributors xxix
I I I I I
2 2 2 2 2D GEOMETRY AND ALGORITHMS D GEOMETRY AND ALGORITHMS D GEOMETRY AND ALGORITHMS D GEOMETRY AND ALGORITHMS D GEOMETRY AND ALGORITHMS
Introduction 3
1. The Area of a Simple Polygon 5
Jon Rokne
2. Intersection of Line Segments C 7
Mukesh Prasad
3. Distance from a Point to a Line 10
Jack C. Morrison
4. An Easy Bounding Circle 14
Jon Rokneviii
5. The Smallest Circle Containing the Intersection C
of Two Circles 17
Jon Rokne
6. Appolonius’s 10th Problem 19
Jon Rokne
7. A Peano Curve Generation Algorithm C 25
Ken Musgrave
8. Space-Filling Curves and a Measure of Coherence C 26
Douglas Voorhies
9. Scanline Coherent Shape Algebra 31
Jonathan E. Steinhart
II II II II II
I I I I IMAGE PROCESSING MAGE PROCESSING MAGE PROCESSING MAGE PROCESSING MAGE PROCESSING
Introduction 49
1. Image Smoothing and Sharpening by Discrete
Convolution 50
Dale A. Schumacher
2. A Comparison of Digital Halftoning Techniques C 75
Dale A. Schumacher
3. Color Dithering C 72
Spencer W. Thomas and Rod G. Bogart
4. Fast Anamorphic Image Scaling 78
Dale A. Schumacher
5. Real Pixels 80
Greg Ward
6. A Fast 90-Degree Bitmap Rotator C 84
Sue-Ken Yap
CONTENTSix
CONTENTS
7. Rotation of Run-Length Encoded Image Data C 86
Jeff Holt
8. Adaptive Run-Length Encoding 89
Andrew S. Glassner
9. Image File Compression Made Easy 93
Alan W. Paeth
10. An Optimal Filter for Image Reconstruction 101
Nelson Max
11. Noise Thresholding in Edge Images 105
John Schlag
12. Computing the Area, the Circumference, and the Genus
of a Binary Digital Image C 107
Hanspeter Bieri and Andreas Kohler
III III III III III
F F F F FRAM RAM RAM RAM RAME E E E E BUFFER TECH BUFFER TECH BUFFER TECH BUFFER TECH BUFFER TECHN N N N NIQUES IQUES IQUES IQUES IQUES
Introduction 115
1. Efficient Inverse Color Map Computation C 116
Spencer W. Thomas
2. Efficient Statistical Computations for Optimal Color
Quantization 126
Xiaolin Wu
3. A Random Color Map Animation Algorithm C 134
Ken Musgrave
4. A Fast Approach to PHIGS PLUS Pseudo Color 138
Mapping
James Hall and Terence Lindgren
5. Mapping RGB Triples onto 16 Distinct Values 143x
6. Television Color Encoding and “Hot” Broadcast
Colors C 147
David Martindale and Alan W. Paeth
7. An Inexpensive Method of Setting the Monitor
White Point 159
Gary W. Meyer
8. Some Tips for Making Color Hardcopy 163
Ken Musgrave
IV IV IV IV IV
3 3 3 3 3D GEOMETRY AND ALGORITHMS D GEOMETRY AND ALGORITHMS D GEOMETRY AND ALGORITHMS D GEOMETRY AND ALGORITHMS D GEOMETRY AND ALGORITHMS
Introduction 169
1. Area of Planar Polygons and Volume of Polyhedra 170
Ronald N. Goldman
2. Getting Around on a Sphere 172
Clifford A. Shaffer
3. Exact Dihedral Metrics for Common Polyhedra 174
Alan W. Paeth
4. A Simple Viewing Geometry 179
Andrew S. Glassner
5. View Correlation C 181
Rod G. Bogart
6. Maintaining Winged-Edge Models 191
Andrew S. Glassner
7. Quadtree/Octree-to-Boundary Conversion 202
Claudio Montani and Roberto Scopigno
8. Three-Dimensional Homogeneous Clipping
of Triangle Strips C 219
Patrick-Gilles Maillot
CONTENTSxi
9. InterPhong Shading C 232
Nadia Magnenat Thalmann, Daniel Thalmann,
and Hong Tong Minh
V V V V V
R R R R RAY TRACING AY TRACING AY TRACING AY TRACING AY TRACING
Introduction 245
1. Fast Ray–Convex Polyhedron Intersection C 247
Eric Haines
2. Intersecting a Ray with an Elliptical Torus C 251
Joseph M. Cychosz
3. Ray–Triangle Intersection Using Binary Recursive
Subdivision 257
Douglas Voorhies and David Kirk
4. Improved Ray Tagging for Voxel-Based Ray Tracing 264
David Kirk and James Arvo
5. Efficiency Improvements for Hierarchy Traversal
in Ray Tracing 267
Eric Haines
6. A Recursive Shadow Voxel Cache for Ray
Tracing C 273
Andrew Pearce
7. Avoiding Incorrect Shadow Intersections for Ray
Tracing 275
Andrew Pearce
8. A Body Color Model: Absorption of Light through
Translucent Media 277
Mark E. Lee and Samuel P. Uselton
9. More Shadow Attenuation for Ray Tracing Transparent
or Translucent Objects 283
Mark E. Lee and Samuel P. Uselton
CONTENTSxii
CONTENTS
Vl Vl Vl Vl Vl
R R R R RADIOSITY ADIOSITY ADIOSITY ADIOSITY ADIOSITY
Introduction 293
1. Implementing Progressive Radiosity with User-
Provided Polygon Display Routines C 295
Shenchang Eric Chen
2. A Cubic Tetrahedral Adaptation of the Hemi-Cube
Algorithm 299
Jeffrey C. Beran-Koehn and Mark J. Pavicic
3. Fast Vertex Radiosity Update C 303
Filippo Tampieri
4. Radiosity via Ray Tracing 306
Peter Shirley
5. Detection of Shadow Boundaries for Adaptive Meshing
in Radiosity 311
François Sillion
Vll Vll Vll Vll Vll
M M M M MATRIX TECHNIQUES ATRIX TECHNIQUES ATRIX TECHNIQUES ATRIX TECHNIQUES ATRIX TECHNIQUES
Introduction 319
1. Decomposing a Matrix into Simple
Transformations C 320
Spencer W. Thomas
2. Recovering the Data from the Transformation Matrix 324
Ronald N. Goldman
3. Transformations as Exponentials 332
Ronald N. Goldman
4. More Matrices and Transformations: Shear and
Pseudo-Perspective 338
Ronald N. Goldmanxiii
5. Fast Matrix Inversion C 342
Kevin Wu
6. Quaternions and 4 × 4 Matrices 351
Ken Shoemake
7. Random Rotation Matrices C 355
James Arvo
8. Classifying Small Sparse Matrices C 357
James Arvo
Vlll Vlll Vlll Vlll Vlll
N N N N NUMERICAL AND PROGRAMMING UMERICAL AND PROGRAMMING UMERICAL AND PROGRAMMING UMERICAL AND PROGRAMMING UMERICAL AND PROGRAMMING
T T T T TECHNIQUES ECHNIQUES ECHNIQUES ECHNIQUES ECHNIQUES
Introduction 365
1. Bit Picking 366
Ken Shoemake
2. Faster Fourier Transform 368
Ken Shoemake
3. Of Integers, Fields, and Bit Counting C 371
Alan W. Paeth and David Schilling
4. Using Geometric Constructions to Interpolate
Orientation with Quaternions 377
John Schlag
5. A Half-Angle Identity for Digital Computation: 381
The Joys of the Halved Tangent
Alan W. Paeth
6. An Integer Square Root Algorithm C 387
Christopher J. Musial
7. Fast Approximation to the Arctangent 389
Ron Capelli
CONTENTSxiv
CONTENTS
8. Fast Sign of Cross Product Calculation C 392
Jack Ritter
9. Interval Sampling 394
Ken Shoemake
10.A Recursive Implementation of the Perlin Noise Function C 396
Greg Ward
I I I I IX X X X X
C C C C CURVES AN URVES AN URVES AN URVES AN URVES AND D D D D SURFACES SURFACES SURFACES SURFACES SURFACES
Introduction 405
1. Least-Squares Approximations to Bézier Curves
and Surfaces 406
Doug Moore and Joe Warren
2. Beyond Bézier Curves 412
Ken Shoemake
3. A Simple Formulation for Curve Interpolation
with Variable Control Point Approximation 417
John Schlag
4. Symmetric Evaluation of Polynomials 420
Terence Lindgren
5. Menelaus’s Theorem 424
Hans-Peter Seidel
6. Geometrically Continuous Cubic Bézier Curves 428
Hans-Peter Siedel
7. A Good Straight-Line Approximation of a Circular
Arc C 435
Christopher J. Musial
8. Great Circle Plotting 440
Alan W. Paeth
9. Fast Anti-Aliased Circle Generation 446
Xiaolin Wu