登录 注册
当前位置:主页 > 资源下载 > 9 > 论文研究-基于同层多尺度核CNN的单细胞图像分类.pdf下载

论文研究-基于同层多尺度核CNN的单细胞图像分类.pdf下载

  • 更新:2024-06-07 17:52:14
  • 大小:731KB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:数据集 - 行业研究
  • 格式:PDF

资源介绍

在经典卷积神经网络模型(Convolution Neural Network,CNN)——LeNet-5的基础上,针对经典模型无法有效进行单细胞图像分类、Faraki M,Nosaka R等人的分类方法需要复杂的特征提取,并且普遍只针对完整单细胞图像,并未考虑图像残缺时的分类等问题,提出了基于同层多尺度核CNN进行单细胞图像分类的方法,使用ICPR2012 HEp-2数据集进行计算机仿真实验测试;仿真实验测试结果表明,同层多尺度核CNN模型具有较高的分类正确率,鲁棒性更好,对于旋转、残缺、对比度亮度变化的单细胞图像仍然能够进行有效分类。