登录 注册
当前位置:主页 > 资源下载 > 33 > 基于集合互信息的Matlab特征选择算法的Matlab实现,其代码为set-mifs,用于复变函数指数函数的计算

基于集合互信息的Matlab特征选择算法的Matlab实现,其代码为set-mifs,用于复变函数指数函数的计算

  • 更新:2024-06-11 23:20:50
  • 大小:292KB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:Matlab - 大数据
  • 格式:ZIP

资源介绍

matlab复变函数指数函数代码set-mifs 基于集合互信息的Matlab特征选择算法的Matlab实现 介绍 在文献中已经提出了使用互信息(MI)来确定模式识别任务中特征的显着性的思想的许多变体。 但是,它们有其局限性:在变量对之间计算MI不能捕获变量组之间更复杂的交互,而对于大于2的特征空间子集计算MI很快就变得难以计算。 确实,一些作者(参见Kwak&Choi,2002)已经简要概述了基于全集的互信息算法,只是将其从计算上抛在一边,以至于在实践中是不可能的。 此处实现的算法是一种计算组的MI的快速方法,可完全解决计算难点。 算法 该算法基于两个简单的数学事实: 在内射(一对一)函数下,互信息不变,即对于任意变量U和V,对于任何内射函数g,I(U; V)= I(U; g(V)) 内射功能的组合本身就是内射功能。 本质上,此算法将多个注入函数应用于特征空间,以达到可以以其他方式无法实现的效率进行处理的表示形式。 与蛮力方法的指数复杂度形成鲜明对比的是,该算法的总复杂度相对于数据点数量而言是次二次的,相对于特征数量而言是线性的。 下图给出了步骤的实际示例: Lampen(2004)