登录 注册
当前位置:主页 > 资源下载 > 31 > 研究基于多尺度池化卷积神经网络的疲劳检测方法

研究基于多尺度池化卷积神经网络的疲劳检测方法

  • 更新:2024-06-30 23:18:26
  • 大小:1.29MB
  • 推荐:★★★★★
  • 来源:网友上传分享
  • 类别:其它 - 开发技术
  • 格式:PDF

资源介绍

针对视觉特征分析疲劳检测问题,设计了一种级联深度学习的检测系统结构,并提出基于多尺度池化的卷积神经网络疲劳状态检测模型。首先通过深度学习模型MTCNN进行人脸检测,提取出眼睛和嘴巴区域;针对眼睛和嘴巴的状态表征和识别问题,提出一种基于ResNet的多尺度池化模型(MSP)对眼睛和嘴巴状态进行训练;实时检测时,将眼睛嘴巴区域通过训练好的卷积神经网络模型进行状态识别,最后基于PERCLOS和提出的嘴巴张合频率(FOM)对驾驶员进行疲劳判定。实验结果表明,该算法具有较高的检测准确率,同时满足实时性要求,且对复杂环境具有较高的鲁棒性。