-
论文研究-滑动窗口二次自回归模型预测混沌时间序列.pdf下载
资源介绍
论文研究-滑动窗口二次自回归模型预测混沌时间序列.pdf,
提出一种新颖的非线性时间序列预测模型,即滑动窗口二次自回归(MWDAR)模型.MWDAR模型使用部分的历史数据及其二次项构造自回归模型.模型参数用线性最小二乘法估计.应用模型进行预测时,预先选定窗口大小以及模型一次项和二次项的阶次.在每个当前时刻,先根据窗口内的数据估计模型参数,然后根据输入向量及模型参数做出预测.这种预测方法不仅适合小数据集的时间序列预测,而且对大数据集具有极高的计算效率.分别用Henon混沌时间序列数据和真实的股票交易数据作了MWDAR方法与局域线性化方法的1步和多步预测对比实验.结果显示MWDAR方法无论在预测精度上,还是在计算效率上都优于局域线性化方法.